Analysis 1, Summer 2023

List 7

L'Hôpital's Rule, Taylor series and polynomials

168. Give an equation for the tangent line to $y = e^{3x}(\cos(4x))^5$ at x = 1. y = 3x + 1

- 169. Is $y = e^{\sin(x)}$ concave up or concave down when $x = \pi$? concave down because $f''(\pi) = -1$ is negative.
- 170. Find the absolute extremes of $x \ln(x)$ on...
 - (a) the interval [0, ¹/₂]. abs min at x = ¹/_e, abs max at x = 0
 (b) the interval [0, 1]. abs min at x = ¹/_e, abs max at both x = 0, x = 1
 (c) the interval [0, 2]. abs min at x = ¹/_e, abs max at x = 2
 - () [) [) e'
 - (d) the interval [1,2]. abs min at x = 1, abs max at x = 2
- 171. Find the inflection points of $f(x) = \frac{3}{10}x^5 5x^4 + 32x^3 96x^2 + 28$. x = 2 is the only inflection point. Although f''(4) = 0, the sign of f'' does not change at x = 4 because f''(x) > 0 for all x near 4.
- 172. If f is a smooth function with

x	-2	-1	0	1	2	3	4
f	3	5	-3	7	8	9	12
f'	2	0	-1	-1	1	3	0
f''	$\begin{array}{c} 3\\ 2\\ 0 \end{array}$	4	1	-1	$\frac{-8}{3}$	0	1

answer the following:

- (a) Does f have a critical point at x = 0? No $f'(0) \neq 0$
- (b) Does f have a local minimum at x = -1? Yes f'(-1) = 0 and f''(-1) > 0
- (c) Does f have a local maximum at x = 4? No local min
- (d) It it possible that f has an absolute minimum at x = -1? No f(x) < f(-1) for x = -2 and x = 0
- (e) It it possible that f has an absolute maximum at x = -1? No f(x) > f(-1) for x = 1, 2, ...
- (f) It it possible that f has an inflection point at x = 3? Yes f''(3) = 0 and f''(2) < 0 < f''(4) (f'' changes sign)
- (g) It it possible that f has an inflection point at x = 4? No $f''(4) \neq 0$

L'Hôpital's Rule: if $\lim_{x \to a} f(x) = 0$ and $\lim_{x \to a} g(x) = 0$ and $\lim_{x \to a} \frac{f(x)}{g(x)}$ exists, then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$

The same substitution works if $\lim_{x \to a} f(x) = \infty$ or $-\infty$ and $\lim_{x \to a} g(x) = \infty$ or $-\infty$. And also for one-sided limits and for $x \to \infty$ and $x \to -\infty$.

173. Calculate
$$\lim_{x \to 1} \frac{3x^3 + 4x^2 - 13x + 6}{2x^4 + x^3 - x^2 + x - 3}$$
 and $\lim_{x \to 4} \frac{\sin(\pi x)}{\ln(x - 3)}$.
$$\lim_{x \to 1} \frac{9x^2 + 8x - 13}{8x^3 + 3x^2 - 2x + 1} = \frac{9 + 8 - 13}{8 + 3 - 2 + 1} = \frac{4}{10} = \begin{bmatrix} 2\\5 \end{bmatrix}$$
$$\lim_{x \to 4} \frac{\pi \cos(\pi x)}{1/(x - 3)} = \frac{\pi \cos(4\pi)}{1/1} = \pi$$

174. Calculate the following limits:

- (a) $\lim_{x \to 0^+} \frac{\ln(x)}{1/x}$ L'Hôpital: $\lim_{x \to 0^+} \frac{\ln(x)}{1/x} = \lim_{x \to 0^+} \frac{1/x}{-1/x^2}$. Then $\frac{1/x}{-1/x^2} = \frac{-x^2}{x} = -x$, so the limit is -0 = 0.
- (b) $\lim_{x \to 0^+} x \ln(x)$ Algebra: $x \ln(x) = \frac{\ln(x)}{1/x}$, so this is the same as (a). $\boxed{0}$

(c)
$$\lim_{x \to 0^+} e^{x \ln(x)} = e^{\left(\lim_{x \to 0^+} x \ln(x)\right)} = e^0 = 1$$

(d) $\lim_{x\to 0^+} x^x$ Algebra: $x^x = (e^{\ln(x)})^x = e^{x\ln(x)}$, so this is the same as (c). 1

Hint for (c): recall that $\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x))$ if f is continuous.

175. (a) Find
$$\lim_{x \to 1} \frac{x^2 - 18}{3x + 4}$$
. $\frac{1 - 18}{3 + 4} = \boxed{\frac{-17}{7}}$
Find $\lim_{x \to 1} \frac{2x}{3}$. $\frac{2(1)}{3} = \boxed{\frac{2}{3}}$

((b) Why are the answers to (a) and (b) not equal? Because $\frac{x^2-18}{3x+4}$ is NOT $\frac{0}{0}$ when x = 1.

176. Find
$$\lim_{x \to 0} \frac{2\sin(x) - \sin(2x)}{x - \sin(x)}.$$
$$\lim_{x \to 0} \frac{2\sin(x) - \sin(2x)}{x - \sin(x)} = \lim_{x \to 0} \frac{2\cos(x) - 2\cos(2x)}{1 - \cos(x)}$$
$$= \lim_{x \to 0} \frac{-2\sin(x) + 4\sin(2x)}{\sin(x)}$$
$$= \lim_{x \to 0} \frac{-2\cos(x) + 8\cos(2x)}{\cos(x)}$$
$$= \frac{-2 + 8}{1} = 6$$

177. (a) Calculate $\lim_{n \to \infty} n \cdot \ln\left(1 + \frac{1}{n}\right)$ using L'Hôpital. 1 (b) Calculate $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$ using the fact that $f(n) = e^{\ln(f(n))}$ and therefore

$$\lim_{n \to \infty} f(n) = \lim_{n \to \infty} e^{\ln(f(n))} = e^{\left(\lim_{n \to \infty} \ln(f(n))\right)}.$$

 $e^1 = \boxed{e}$

178. For the function $f(x) = x^2 e^{-x}$, find $\lim_{x \to \infty} f(x)$ and $\lim_{x \to 0} f(x)$ and $\lim_{x \to -\infty} f(x)$.

(a)
$$\lim_{x \to \infty} x^2 e^{-x} = \lim_{x \to \infty} \frac{x^2}{e^x} \stackrel{\text{L'H}}{=} \lim_{x \to \infty} \frac{2x}{e^x} \stackrel{\text{L'H}}{=} \lim_{x \to \infty} \frac{2}{e^x} = \boxed{0}.$$

(b) Do not use L'Hôpital! Just plug in x = 0 to get $\frac{0^2}{e^{-0}} = \frac{0}{1} = 0$.

(c)
$$\lim_{x \to -\infty} x^2 e^{-x} = \lim_{x \to \infty} x^2 e^x = +\infty$$
.

For a function f(x), the degree-N Taylor polynomial around x = a is

$$\sum_{n=0}^{N} \frac{f^{(n)}(a)}{n!} (x-a)^n,$$

where $n! = n \cdot (n-1) \cdots 2 \cdot 1$ is a factorial and $f^{(n)}$ is the n^{th} derivative of f. Note that 0! = 1 and that $f^{(0)} = f$. In expanded form, this is

$$f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(N)}(a)}{N!}(x-a)^N.$$

179. (a) Calculate the functions f'(x) and f''(x) for $f(x) = x^{5/2}$.

- (b) Calculate the numbers f(4), f'(4), and f''(4) for $f(x) = x^{5/2}$.
- (c) Give the degree-2 Taylor polynomial for $x^{5/2}$ around x = 4. (You may leave "(x 4)" in your answer; you do not have to expand it to " $x^2 + ...$ ".) $32 + 20(x - 4) + \frac{15}{4}(x - 4)^2$
- 180. Give the degree-3 Taylor polynomial for $e^x \cos(x)$ around x = 0. $1 + x \frac{x^3}{3}$ (You will first need to find f'(x), f''(x), f'''(x) and the numbers f(0), ..., f'''(0).)
- 181. (a) Give the quadratic Taylor polynomial for \sqrt{x} around x = 1. $1 + \frac{1}{2}(x-1) - \frac{1}{8}(x-1)^2$
 - (b) Plug x = 1.2 into your polynomial from part (a) to get a "quadratic approximation" to $\sqrt{1.2}$. $1 + \frac{1}{2}(0.2) \frac{1}{8}(0.2)^2 = 1.095$
 - (c) Compare the quadratic approximation to the linear approximation from Task 82(a)-(c). Which is closer to the true value of $\sqrt{1.2} \approx 1.09545$? The quadratic approximation is better (closer to the exact value $\sqrt{1.2}$) than the linear approximation.

The **Taylor series around** x = a is $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$. Here are Taylor¹ series around zero for some common functions: $\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$ $\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$ $\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \cdots$ $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$ $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$

182. Give the Taylor series for $\frac{x^3}{1-x}$ around x = 0. $(x^3)(\frac{1}{1-x}) = x^3(1+x^2+x^3+x^4+x^5+\cdots) = x^3+x^5+x^6+x^7+x^8+\cdots$

183. Give the Taylor series for $\ln(1+x^2)$ around x = 0. $x^2 - \frac{x^4}{2} + \frac{x^6}{3} - \frac{x^8}{4} + \frac{x^{10}}{5} - \cdots$

184. Give the Taylor polynomial of degree 6 for $f(x) = \ln(x)$ around x = 1. $(x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3 - \frac{1}{4}(x-1)^4 + \frac{1}{5}(x-1)^5 - \frac{1}{6}(x-1)^6$

185. (a) Give the Taylor polynomial of degree 3 for $f(x) = \frac{x}{\cos(x)}$ around x = 0.

$$f(x) = \frac{x}{\cos(x)} f(0) = 0$$

$$f'(x) = \frac{\cos(x) + x\sin(x)}{(\cos(x))^2} f'(0) = 1$$

$$f''(x) = \frac{c^2(-s+xc+s) - (c+xs)2c(-s)}{c^4} \qquad f''(0) = 0$$
$$= \frac{xc^3 + 2c^2s + 2xcs^2}{c^4}$$

f'''(0) = 3

c⁴ $f'''(x) = \dots$ so $P(x) = 0 + 1x + \frac{0}{2}x^2 + \frac{3}{3!}x^3 = \boxed{x + \frac{1}{2}x^3}$

(b) Give the Taylor polynomial of degree 4 for $f(x) = \frac{\sin(x)}{x}$ around x = 0. $\frac{\sin(x)}{x} = \frac{x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots}{x} = 1 - \frac{1}{6}x^2 + \frac{1}{120}x^4 - \frac{1}{7!}x^6 + \cdots$, so the Taylor polynomial is $1 - \frac{1}{6}x^2 + \frac{1}{120}x^4$

- (c) Which more difficult—part (a) or part (b)? (a)
- 186. On a single set of axes with $x \in [0, 4]$ and $y \in [-1, 2]$, draw the curve $y = \ln(x)$, the tangent line to $y = \ln(x)$ at the point $(2, \ln 2)$, and the graph of the quadratic Taylor polynomial for $\ln(x)$ around x = 2.

 $^{^1\,\}mathrm{A}$ Taylor series around zero is also called a "Maclaurin series".

An **anti-derivative** of f(x) is a function whose derivative is f(x). In symbols, F(x) is an anti-derivative of f(x) if F'(x) = f(x).

- 187. (a) Give an anti-derivative of $10x^9$. That is, give a function F(x) for which $F'(x) = 10x^9$.
 - (b) Give another anti-derivative of $10x^9$.
 - (c) Give another anti-derivative of $10x^9$.
 - (d) Give another anti-derivative of $10x^9$.

All answers will be of the form $x^{10} + C$. These might include x^{10} or $x^{10} + 1$ or $x^{10} - 12345$, etc.

188. Give an anti-derivative of $\sin(x)$. $-\cos(x)$ or any $-\cos(x) + C$

189. Give an anti-derivative for each of the following functions:

190. Give an anti-derivative of $3x^2 \cos(x^3 + 9)$. $\sin(x^3 + 9)$