List 7

L'Hôpital's Rule, Taylor series and polynomials

168. Give an equation for the tangent line to $y=e^{3 x}(\cos (4 x))^{5}$ at $x=1$. $y=3 x+1$
169. Is $y=e^{\sin (x)}$ concave up or concave down when $x=\pi$? concave down because $f^{\prime \prime}(\pi)=-1$ is negative.
170. Find the absolute extremes of $x \ln (x)$ on...
(a) the interval $\left[0, \frac{1}{2}\right]$. abs min at $x=\frac{1}{e}$, abs max at $x=0$
(b) the interval $[0,1]$. abs min at $x=\frac{1}{e}$, abs max at both $x=0, x=1$
(c) the interval $[0,2]$. abs min at $x=\frac{1}{e}$, abs max at $x=2$
(d) the interval $[1,2]$. abs min at $x=1$, abs max at $x=2$
171. Find the inflection points of $f(x)=\frac{3}{10} x^{5}-5 x^{4}+32 x^{3}-96 x^{2}+28 . x=2$ is the only inflection point. Although $f^{\prime \prime}(4)=0$, the sign of $f^{\prime \prime}$ does not change at $x=4$ because $f^{\prime \prime}(x)>0$ for all x near 4 .
172. If f is a smooth function with

x	-2	-1	0	1	2	3	4
f	3	5	-3	7	8	9	12
f^{\prime}	2	0	-1	-1	1	3	0
$f^{\prime \prime}$	0	4	1	-1	$\frac{-8}{3}$	0	1

answer the following:
(a) Does f have a critical point at $x=0$? No $f^{\prime}(0) \neq 0$
(b) Does f have a local minimum at $x=-1$? Yes $f^{\prime}(-1)=0$ and $f^{\prime \prime}(-1)>0$
(c) Does f have a local maximum at $x=4$? No local min
(d) It it possible that f has an absolute minimum at $x=-1$? No $f(x)<f(-1)$ for $x=-2$ and $x=0$
(e) It it possible that f has an absolute maximum at $x=-1$? No $f(x)>f(-1)$ for $x=1,2, \ldots$
(f) It it possible that f has an inflection point at $x=3$? Yes $f^{\prime \prime}(3)=0$ and $f^{\prime \prime}(2)<0<f^{\prime \prime}(4)\left(f^{\prime \prime}\right.$ changes sign)
(g) It it possible that f has an inflection point at $x=4$? No $f^{\prime \prime}(4) \neq 0$

L'Hôpital's Rule: if $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=0$ and $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ exists, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)} .
$$

The same substitution works if $\lim _{x \rightarrow a} f(x)=\infty$ or $-\infty$ and $\lim _{x \rightarrow a} g(x)=\infty$ or $-\infty$. And also for one-sided limits and for $x \rightarrow \infty$ and $x \rightarrow-\infty$.
173. Calculate $\lim _{x \rightarrow 1} \frac{3 x^{3}+4 x^{2}-13 x+6}{2 x^{4}+x^{3}-x^{2}+x-3}$ and $\lim _{x \rightarrow 4} \frac{\sin (\pi x)}{\ln (x-3)}$.
$\lim _{x \rightarrow 1} \frac{9 x^{2}+8 x-13}{8 x^{3}+3 x^{2}-2 x+1}=\frac{9+8-13}{8+3-2+1}=\frac{4}{10}=\frac{2}{5}$
$\lim _{x \rightarrow 4} \frac{\pi \cos (\pi x)}{1 /(x-3)}=\frac{\pi \cos (4 \pi)}{1 / 1}=\pi$
174. Calculate the following limits:
(a) $\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{1 / x}$ L'Hôpital: $\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{1 / x}=\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-1 / x^{2}}$.

Then $\frac{1 / x}{-1 / x^{2}}=\frac{-x^{2}}{x}=-x$, so the limit is $-0=0$.
(b) $\lim _{x \rightarrow 0^{+}} x \ln (x)$ Algebra: $x \ln (x)=\frac{\ln (x)}{1 / x}$, so this is the same as (a). 0
(c) $\lim _{x \rightarrow 0^{+}} e^{x \ln (x)}=e^{\left(\lim _{x \rightarrow 0^{+}} x \ln (x)\right)}=e^{0}=1$
(d) $\lim _{x \rightarrow 0^{+}} x^{x}$ Algebra: $x^{x}=\left(e^{\ln (x)}\right)^{x}=e^{x \ln (x)}$, so this is the same as (c). 1

Hint for (c): recall that $\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)$ if f is continuous.
175. (a) Find $\lim _{x \rightarrow 1} \frac{x^{2}-18}{3 x+4} \cdot \frac{1-18}{3+4}=\frac{-17}{7}$

Find $\lim _{x \rightarrow 1} \frac{2 x}{3} \cdot \frac{2(1)}{3}=\frac{2}{3}$
(b) Why are the answers to (a) and (b) not equal? Because $\frac{x^{2}-18}{3 x+4}$ is NOT $\frac{0}{0}$ when $x=1$.
176. Find $\lim _{x \rightarrow 0} \frac{2 \sin (x)-\sin (2 x)}{x-\sin (x)}$.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{2 \sin (x)-\sin (2 x)}{x-\sin (x)} & =\lim _{x \rightarrow 0} \frac{2 \cos (x)-2 \cos (2 x)}{1-\cos (x)} \\
& =\lim _{x \rightarrow 0} \frac{-2 \sin (x)+4 \sin (2 x)}{\sin (x)} \\
& =\lim _{x \rightarrow 0} \frac{-2 \cos (x)+8 \cos (2 x)}{\cos (x)} \\
& =\frac{-2+8}{1}=6
\end{aligned}
$$

177. (a) Calculate $\lim _{n \rightarrow \infty} n \cdot \ln \left(1+\frac{1}{n}\right)$ using L'Hôpital. 1
(b) Calculate $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$ using the fact that $f(n)=e^{\ln (f(n))}$ and therefore

$$
\lim _{n \rightarrow \infty} f(n)=\lim _{n \rightarrow \infty} e^{\ln (f(n))}=e^{\left(\lim _{n \rightarrow \infty} \ln (f(n))\right)}
$$

$$
e^{1}=e
$$

178. For the function $f(x)=x^{2} e^{-x}$, find $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow 0} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$.
(a) $\lim _{x \rightarrow \infty} x^{2} e^{-x}=\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{x}} \stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{=} \lim _{x \rightarrow \infty} \frac{2 x}{e^{x}} \stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{=} \lim _{x \rightarrow \infty} \frac{2}{e^{x}}=0$.
(b) Do not use L'Hôpital! Just plug in $x=0$ to get $\frac{0^{2}}{e^{-0}}=\frac{0}{e^{0}}=\frac{0}{1}=0$.
(c) $\lim _{x \rightarrow-\infty} x^{2} e^{-x}=\lim _{x \rightarrow \infty} x^{2} e^{x}=+\infty$.

For a function $f(x)$, the degree- \boldsymbol{N} Taylor polynomial around $\boldsymbol{x}=\boldsymbol{a}$ is

$$
\sum_{n=0}^{N} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

where $n!=n \cdot(n-1) \cdots 2 \cdot 1$ is a factorial and $f^{(n)}$ is the $n^{\text {th }}$ derivative of f. Note that $0!=1$ and that $f^{(0)}=f$. In expanded form, this is

$$
f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(N)}(a)}{N!}(x-a)^{N} .
$$

179. (a) Calculate the functions $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ for $f(x)=x^{5 / 2}$.
(b) Calculate the numbers $f(4), f^{\prime}(4)$, and $f^{\prime \prime}(4)$ for $f(x)=x^{5 / 2}$.
(c) Give the degree-2 Taylor polynomial for $x^{5 / 2}$ around $x=4$. (You may leave " $(x-4)$ " in your answer; you do not have to expand it to " $-x^{2}+\ldots$ ".) $32+20(x-4)+\frac{15}{4}(x-4)^{2}$
180. Give the degree-3 Taylor polynomial for $e^{x} \cos (x)$ around $x=0$. $1+x-\frac{x^{3}}{3}$
(You will first need to find $f^{\prime}(x), f^{\prime \prime}(x), f^{\prime \prime \prime}(x)$ and the numbers $\left.f(0), \ldots, f^{\prime \prime \prime}(0).\right)$
181. (a) Give the quadratic Taylor polynomial for \sqrt{x} around $x=1$.

$$
1+\frac{1}{2}(x-1)-\frac{1}{8}(x-1)^{2}
$$

(b) Plug $x=1.2$ into your polynomial from part (a) to get a "quadratic approximation" to $\sqrt{1.2} .1+\frac{1}{2}(0.2)-\frac{1}{8}(0.2)^{2}=1.095$
(c) Compare the quadratic approximation to the linear approximation from Task 82 (a)-(c). Which is closer to the true value of $\sqrt{1.2} \approx 1.09545$? The quadratic approximation is better (closer to the exact value $\sqrt{1.2}$) than the linear approximation.

The Taylor series around $\boldsymbol{x}=\boldsymbol{a}$ is $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$. Here are Taylor ${ }^{1}$ series around zero for some common functions:

$$
\begin{aligned}
\sin (x) & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots & \cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
\frac{1}{1-x} & =1+x+x^{2}+x^{3}+x^{4}+\cdots & \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots \\
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots &
\end{aligned}
$$

182. Give the Taylor series for $\frac{x^{3}}{1-x}$ around $x=0 . \quad\left(x^{3}\right)\left(\frac{1}{1-x}\right)=x^{3}\left(1+x^{2}+x^{3}+\right.$ $\left.x^{4}+x^{5}+\cdots\right)=x^{3}+x^{5}+x^{6}+x^{7}+x^{8}+\cdots$
183. Give the Taylor series for $\ln \left(1+x^{2}\right)$ around $x=0 . x^{2}-\frac{x^{4}}{2}+\frac{x^{6}}{3}-\frac{x^{8}}{4}+\frac{x^{10}}{5}-\cdots$
184. Give the Taylor polynomial of degree 6 for $f(x)=\ln (x)$ around $x=1$.

$$
(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}-\frac{1}{4}(x-1)^{4}+\frac{1}{5}(x-1)^{5}-\frac{1}{6}(x-1)^{6}
$$

185. (a) Give the Taylor polynomial of degree 3 for $f(x)=\frac{x}{\cos (x)}$ around $x=0$.

$$
\begin{array}{rlrl}
f(x) & =\frac{x}{\cos (x)} & f(0)=0 \\
f^{\prime}(x) & =\frac{\cos (x)+x \sin (x)}{(\cos (x))^{2}} & f^{\prime}(0)=1 \\
f^{\prime \prime}(x) & =\frac{\mathrm{c}^{2}(-\mathrm{s}+x \mathrm{c}+\mathrm{s})-(\mathrm{c}+x \mathrm{~s}) 2 \mathrm{c}(-\mathrm{s})}{\mathrm{c}^{4}} & f^{\prime \prime}(0)=0 \\
& =\frac{x \mathrm{c}^{3}+2 \mathrm{c}^{2} \mathrm{~s}+2 x \mathrm{cs}^{2}}{\mathrm{c}^{4}} & & f^{\prime \prime \prime}(0)=3 \\
f^{\prime \prime \prime}(x) & =\ldots & & \\
\text { so } P(x)=0+1 x+\frac{0}{2} x^{2}+\frac{3}{3!} x^{3}=x+\frac{1}{2} x^{3} & &
\end{array}
$$

(b) Give the Taylor polynomial of degree 4 for $f(x)=\frac{\sin (x)}{x}$ around $x=0$. $\frac{\sin (x)}{x}=\frac{x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots}{x}=1-\frac{1}{6} x^{2}+\frac{1}{120} x^{4}-\frac{1}{7!} x^{6}+\cdots$, so the
Taylor polynomial is $1-\frac{1}{6} x^{2}+\frac{1}{120} x^{4}$
(c) Which more difficult-part (a) or part (b)? (a)
186. On a single set of axes with $x \in[0,4]$ and $y \in[-1,2]$, draw the curve $y=\ln (x)$, the tangent line to $y=\ln (x)$ at the point $(2, \ln 2)$, and the graph of the quadratic Taylor polynomial for $\ln (x)$ around $x=2$.

[^0]

An anti-derivative of $f(x)$ is a function whose derivative is $f(x)$.
In symbols, $F(x)$ is an anti-derivative of $f(x)$ if $F^{\prime}(x)=f(x)$.
187. (a) Give an anti-derivative of $10 x^{9}$.

That is, give a function $F(x)$ for which $F^{\prime}(x)=10 x^{9}$.
(b) Give another anti-derivative of $10 x^{9}$.
(c) Give another anti-derivative of $10 x^{9}$.
(d) Give another anti-derivative of $10 x^{9}$.

All answers will be of the form $x^{10}+C$. These might include x^{10} or $x^{10}+1$ or $x^{10}-12345$, etc.
188. Give an anti-derivative of $\sin (x) .-\cos (x)$ or any $-\cos (x)+C$
189. Give an anti-derivative for each of the following functions:
(a) x^{3}
$\frac{1}{4} x^{4}$
(e) $-3 x^{15} \quad \frac{-3}{16} x^{16}$
(i) $\frac{-4}{3} x^{7} \quad \frac{-1}{6} x^{8}$
(b) $12 x^{5} \quad 2 x^{6}$
(f) $\frac{1}{2} x^{2}$
(j) $5 \sin (x)$
$-5 \cos (x)$
(c) $12 x^{4}$
$\frac{12}{5} x^{5}$
(g) $x^{5000} \frac{1}{5001} x^{5001}$
(k) $2 \cos (x) \quad 2 \sin (x)$
(d) x^{15}
$\frac{1}{16} x^{16}$
(h) $\frac{3}{5} x^{12} \quad \frac{3}{65} x^{13}$
(ℓ) e^{x}
e^{x}
190. Give an anti-derivative of $3 x^{2} \cos \left(x^{3}+9\right)$. $\sin \left(x^{3}+9\right)$

[^0]: ${ }^{1} \mathrm{~A}$ Taylor series around zero is also called a "Maclaurin series".

